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The effect of particle size, shape, distribution
and their evolution on the constitutive response

of nonlinearly viscous composites. I. Theory

B y M. Kailasam1, P. Ponte Casta ñ eda1 and J. R. Willis2

1Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, PA 19104, USA

2Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9EW, UK

This work deals with the development of constitutive models for two-phase nonlin-
early viscous and perfectly plastic composites with evolving microstructures. The
work builds on the earlier models of Ponte Castañeda & Zaidman (1994) for com-
posites with particulate microstructures subjected to finite deformation, where the
influence of the evolution of the average shape and size of the inclusions (or voids) on
the overall anisotropic response of the composites was considered. The present model
additionally takes into account the effect of independent changes in the random dis-
tribution of the inclusions as the deformation progresses. Thus, appropriate ‘internal
variables’ characterizing the state of the microstructure are incorporated into the ‘in-
stantaneous’ constitutive equations for the composite and ‘evolution laws’ for these
variables are proposed. The first part of this work deals with the development of the
instantaneous constitutive relations for a sufficiently broad class of microstructures
to be able to consider the evolution problem under general triaxial loading conditions
(with fixed loading axes). The ‘aspect ratios’ of the two-point distribution function
are introduced as new microstructural variables, along with the aspect ratios and the
volume fraction of the inclusions as proposed in the earlier models. Evolution laws
are then developed for all these variables, which—when integrated together with the
instantaneous constitutive relations—serve to determine the effective anisotropic re-
sponse of the composite under the prescribed loading conditions. Part II of this work
is concerned with the application of the model to some specific classes of two-phase
composite materials subjected to axisymmetric loading conditions.

1. Introduction

Over the past few years, various authors have proposed homogenization models to
estimate the effective behaviour of linear composite materials. Among them, Hashin
& Shtrikman (1963) made use of new variational principles to obtain rigorous bounds
for the effective behaviour of composites with statistically homogeneous and isotropic
distributions of linear elastic phases. Willis (1977) generalized these results by in-
troducing the statistical notion of ‘ellipsoidal symmetry’ and later showed (Willis
1978) that his earlier results could be identified with specific types of particulate
microstructures. Thus, Willis obtained estimates for composites whose microstruc-
ture consists of identically shaped ellipsoidal inclusions distributed in such a way
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that the two-point correlation functions characterizing the relative positions of the
centres of the inclusions are also ellipsoidal with the same shape as the inclusions.
Recently, Ponte Castañeda & Willis (1995) made use of this early work to give ex-
plicit estimates for the overall behaviour of linear composites consisting of ellipsoidal
inclusions with pair distribution functions that are also ellipsoidal in shape, but with
aspect ratios that are generally different from those of the inclusions.

Among several models proposed to estimate the effective behaviour of nonlinear
composite materials, Ponte Castañeda (1991) (see also Talbot & Willis 1992; Su-
quet 1993) introduced a variational representation by means of which estimates for
the effective behaviour of nonlinear composites can be generated from correspond-
ing estimates for the effective behaviour of ‘linear comparison composites’ with the
same microstructures as the nonlinear composites. In particular, this suggests that
the new linear estimates of Ponte Castañeda & Willis (1995) may be used in con-
junction with the aforementioned variational representation to obtain estimates for
the effective behaviour of nonlinear composites with general ellipsoidal particulate
microstructures. It should be mentioned that an alternative approach would be to
make use of the nonlinear Hashin–Shtrikman variational principles of Talbot & Willis
(1985) (see also Ponte Castañeda & Willis 1988; Willis 1991). However, for the class
of nonlinear material models of interest here, it can be shown that the same estimates
would result from both approaches. Therefore, given that the linear estimates are
already available from the work of Ponte Castañeda & Willis (1995), it is perhaps
simplest to make use of the variational procedure of Ponte Castañeda (1991) to ob-
tain the corresponding estimates for the nonlinear composites; this is the approach
that will be taken in this work.

When composites are subjected to finite deformation, their microstructure changes
continuously and consequently their effective response is affected. In particular, an
initially isotropic composite may develop strongly anisotropic behaviour under ap-
propriately chosen loading conditions. For example, a steel reinforced by an isotropic
distribution of hard spherical particles would develop significant anisotropies if it
was subjected to a hot-rolling operation in order to generate a large extension in the
rolling direction coupled with a large reduction in thickness. The usual homogeniza-
tion models, including the ones described above, do not normally take into account
this important feature, implicitly assuming that the microstructure remains frozen
during the deformation process. Recently, however, Ponte Castañeda & Zaidman
(1994) (see also Zaidman & Ponte Castañeda 1996) proposed constitutive models
which are capable of accounting for the evolution of the microstructure in porous
and two-phase composites with particulate microstructures and nonlinearly viscous
constitutive behaviour. These models make use of the variational representation of
Ponte Castañeda to obtain estimates for the ‘instantaneous’ effective constitutive
response, as well as for the average strain-rate in the phases of the nonlinear com-
posites. In addition, appropriate internal variables were identified to characterize the
state of the microstructure and evolution laws for these variables were proposed.
Thus, the volume fraction (characterizing the average size) and the aspect ratios
(characterizing the average shape) of the inclusions were introduced as the relevant
microstructural variables and kinematically based evolution laws were prescribed for
these variables. This was carried out under general triaxial loading conditions, with
the assumption that the loading axes remain aligned with the material symmetry
axes of the composite, in order to preclude the (average) rotation of the inclusions.
Furthermore, the model involved the assumption that the spatial distribution of the
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inclusions exhibit the same ‘ellipsoidal symmetry’ as the shape of the inclusions at
every instant in the deformation process, thus permitting the use of the results of
Willis (1978) to estimate the effective response of the linear comparison composites.

In this work, we shall extend the model of Ponte Castañeda & Zaidman by treating
the spatial distribution of the inclusions as an independent microstructural variable.
Thus, the relevant microstructural variables, in the context of the improved model,
are taken to be the aspect ratios of the (ellipsoidal) pair-distribution function for the
inclusions, as well as the volume fraction and aspect ratios of the (also ellipsoidal) in-
clusions. The new estimates of Ponte Castañeda & Willis will be used in conjunction
with the variational procedure of Ponte Castañeda to obtain the instantaneous con-
stitutive relations for the nonlinear composite. Evolution laws will then be developed
for the relevant microstructural variables, which will be integrated simultaneously
with the instantaneous constitutive relations for the composite in order to describe
the effective anisotropic response of the nonlinear composites under triaxial loading
conditions (with fixed axes). In part II of this work (Kailasam et al. 1997), the be-
haviour of specific composites subjected to axisymmetric loading conditions will be
considered in some detail. In particular, the case of composites with initially isotropic
distributions of rigid inclusions of spherical shape will be studied in an attempt to
isolate the effects of changes in the pair-distribution function of the inclusions from
the effects of corresponding changes in the size and shape of the inclusions, which
was the focus of the earlier work of Ponte Castañeda & Zaidman (1994).

The ultimate goal of this work is to develop simple constitutive models capable of
describing the anisotropic and non-uniform development of microstructure in com-
posite materials subjected to standard forming techniques such as forging, rolling
and extrusion. Experimental evidence that the evolution of the microstructure af-
fects the overall response of the materials can be found, for example, in the work of
Spitzig et al. (1988) on iron compacts.

2. Effective properties of composite materials

In this work, a composite is defined as a heterogeneous material with two distinct
length scales; a macroscopic one characterizing the overall dimensions of the specimen
and the scale of variation of the applied loading conditions and a microscopic one
characterizing the size of the typical heterogeneity (e.g. inclusions). By effective
properties, we mean the relation between the averages of the local stress and strain-
rate fields within the composite.

The local behaviour of the composite is assumed to be nonlinearly viscous and is
governed by a stress potential U , through the relation

D =
∂U

∂σ
(x,σ), (2.1)

where σ andD represent the Cauchy stress and the Eulerian strain rate, respectively.
For a composite with two phases, this potential can be expressed in the form

U(x,σ) =
2∑
r=1

χ(r)(x)U (r)(σ), (2.2)

where U (r) and χ(r) denote the stress potential and the characteristic function (equal
to 1 if x is in phase r, and 0 otherwise) of phase r (r = 1, 2), respectively. The effective
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behaviour of the composite is then defined by the relation (Hill 1963)

D̄ =
∂Ũ

∂σ̄
(σ̄), (2.3)

where D̄ is the average strain rate in the composite, σ̄ is the average stress and
Ũ denotes the effective potential of the composite. The effective potential may be
obtained from the variational representation

Ũ(σ̄) = min
σ∈S(σ̄)

∫
Ω
U(x,σ) dv, (2.4)

where
S(σ̄) = {σ|∇ · σ = 0 in Ω and σn = σ̄n on ∂Ω}

is the set of statically admissible stress fields corresponding to the applied uniform
stress σ̄ on the boundary.

In this work, we consider the nonlinear phases to be isotropic with potentials

U (r)(σ) = φ(r)(σe) +
1

2k(r)σ
2
m, (2.5)

where σe = 3
2σ
′ ·σ′ is the equivalent stress (σ′ is the deviatoric stress), σm = 1

3(trσ)
is the hydrostatic stress and k(r) is the bulk viscosity of phase r. The functions φ(r),
which are assumed to be convex in σe, may be taken to have the power-law form

φ(r)(σe) =
σ

(r)
y

n(r) + 1

[
σe

σ
(r)
y

]n(r)+1

=
1

3(n(r) + 1)µ(r)σ
n(r)+1
e , (2.6)

which is commonly used in high-temperature creep. In the above relation, n(r) and
σ

(r)
y = (3µ(r))1/n(r)

are the creep exponent and the reference stress of phase r, re-
spectively.

In the expression for φ(r), n(r) = 1 corresponds to linearly viscous behaviour which
is governed by the viscosity coefficient µ(r). We then write the constitutive relation
of phase r in the form

σ = L(r)D, (2.7)
where L(r) = (3k(r), 2µ(r)) is the viscosity tensor for phase r, in the sense of Hill
(1965). We note that the bulk viscosity is introduced in order to be able to consider
the limit of vacuous phases, in which case L(r) = (0, 0); however, non-vacuous phases
will be taken to be incompressible so that L(r) = (∞, 2µ(r)). The effective potential
of the composite may then be expressed as

Ũ(σ̄) = 1
2 σ̄ · (M̃σ̄), (2.8)

where M̃ is the effective viscous compliance tensor. Making use of relation (2.3), we
obtain the following relation between the average stress and the average strain rate
in the composite:

σ̄ = L̃D̄, (2.9)

where L̃ is the effective viscosity tensor of the composite and is related to the effective
viscous compliance tensor through the relation M̃ = L̃−1.

When phase r is taken to be incompressible and n(r) →∞, the expression for φ(r)

corresponds to rigid–perfectly plastic behaviour of the von Mises type, with tensile
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yield stress σ(r)
y . The function φ(r) then takes the form

φ(r)(σe) =

{
0, if σe 6 σ(r)

y ,

∞, otherwise,
(2.10)

and relation (2.1) for the local behaviour of the composite is replaced by the normality
condition

D = λ̇σ′, (2.11)

where λ̇ is the (non-negative) plastic loading parameter. In order to describe the
effective behaviour of composites made of such phases, it is convenient to introduce
an effective yield domain P̃ (Suquet 1983), such that

Ũ(σ̄) =

{
0, if σ̄ ∈ P̃ ,
∞, otherwise.

(2.12)

The boundary of P̃ then defines an effective yield function

Φ̃(σ̄) = 0, (2.13)

in terms of which we have (Hill 1967)

D̄ = Λ̇
∂Φ̃
∂σ̄

(σ̄), (2.14)

where Λ̇ is a non-negative parameter to be determined from the consistency condi-
tion.

3. Linearly viscous composites

(a ) Effective constitutive relations
In this work, we make use of the Hashin–Shtrikman estimates of Ponte Castañeda

& Willis (1995) for the effective viscosity tensor L̃ of linearly viscous (mathematically
analogous to linearly elastic) composites with particulate microstructures consisting
of random ‘ellipsoidal’ distributions of ellipsoidal inclusions of one material (denoted
by the superscript 2) in a matrix of a different material (denoted 1). Referring to
figure 1, the aspect ratios of the inclusions are defined by wi

1 = l3/l1 and wi
2 = l3/l2

(see figure 1a), whereas those of the distribution function are defined by wd
1 = L3/L1

and wd
2 = L3/L2 (see figure 1b). (Note that the microstructure in figure 1b has been

depicted as being periodic, for ease of visualization only.)
These estimates for the effective viscosity of the composite can be written in

terms of the strain-rate concentration tensors A(r) (r = 1, 2), which are such that
the average strain rate in phase r is given by D(r) = A(r)D̄ (Hill 1965), via the
expression

L̃ =
2∑
r=1

c(r)L(r)A(r), (3.1)

where the expression for A(2), obtained from the Hashin–Shtrikman procedure (see
Ponte Castañeda & Willis 1995), can be written as

A(2) = [I + (P i − c(2)P d)(L(2) −L(1))]−1, (3.2)
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X1

X2

X3

X 3

X 2

l 2

l3

l1

L 2

L 3

(a) (b)

Figure 1. Inclusion (void) geometry and distribution. (a) Ellipsoidal inclusion (void) with aspect
ratios, wi

1 = l3/l1 and wi
2 = l3/l2. (b) Ellipsoidal distribution of the inclusions with centres

positioned such that the aspect ratio wd
2 = L3/L2 and also wd

1 = L3/L1 (not shown).

and A(1) is such that
c(1)A(1) + c(2)A(2) = I. (3.3)

In the above expressions, c(1) and c(2) are the volume fractions of the matrix and the
inclusions, respectively, I is the fourth-order identity tensor, P i and P d are geometric
tensors associated with the inclusions (which are all identical in shape) and their
spatial distributions, respectively. Both P i and P d depend on the properties of the
matrix and, in addition, P i depends on the aspect ratios of the inclusions while P d

depends on the aspect ratios of the spatial distribution of the inclusions. We note
that the P tensors are related to the Eshelby (1957) tensors S, corresponding to an
isolated inclusion embedded in a matrix of phase 1, through the relation P = SM (1).
The corresponding expression for M̃ , obtained from (3.1) upon simplification, is
given by

M̃ = {I + c(2)[(M (1)L(2) − I)−1 + (Si − c(2)Sd)]−1}−1M (1). (3.4)

We observe that when P i = P d = P (or Si = Sd = S), the above expressions
for M̃ and A(2) reduce to the expressions of Willis (1977, 1978). If, in addition, we
consider the case where the inclusions are present in dilute concentrations (c(2) → 0),
the expressions are in agreement with the well-known estimates of Eshelby (1957).
Note that the distribution effects, as characterized by P d or Sd, become negligible
in this limiting case. We also note that if L(1) > L(2) (L(1) < L(2)), in the sense of
quadratic forms, the expressions for L̃ and M̃ can be interpreted as upper (lower) and
lower (upper) bounds, respectively, for the class of microstructures described here.
Finally, the estimates (3.1) or (3.4) are believed to be adequate for general particulate
composites in the low to intermediate range of volume fractions, ensuring that, on
the average, the inclusions are not too close to each other and strong interaction
effects can be safely neglected.

(b ) Evolution of the microstructure under triaxial loading conditions
If a composite is subjected to finite deformation, it is clear that its microstructure

will not remain fixed but instead will change at every stage of the deformation
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process. However, to account for the evolution of the microstructure exactly is a
very complicated problem and so certain simplifying assumptions will be made here
to capture the essential features of the problem. The first such assumption is that the
applied loading will be taken to be triaxial with axes coinciding with the material
symmetry axes of the composite. This ensures that the inclusions do not change
orientation during the deformation process (at least on the average). It should be
emphasized that this assumption could be relaxed, which would involve keeping track
of the (average) orientation of the inclusions throughout the deformation process (see
Kailasam & Ponte Castañeda 1997).

For composites with dilute concentrations of inclusions subjected to uniform load-
ing conditions, Eshelby (1957) has shown that the strain rate within the inclusions
is uniform. This implies that an initially ellipsoidal inclusion will deform into ellip-
soidal shapes with possibly different size, aspect ratios and orientations (the last of
which, as we mentioned earlier, is not accounted for in this work). Ponte Castañeda
& Zaidman (1994) (see also Zaidman & Ponte Castañeda 1996) have argued that
even for composites with non-dilute concentrations of the inclusions, subjected to
triaxial loading conditions, initially spherical inclusions may be assumed to deform,
on the average, into ellipsoidal inclusions which are aligned with the loading axes.
The difference in this case is that the average strain rate in the inclusions is deter-
mined by using the ‘non-dilute’ Hashin–Shtrikman expression (3.2) for the strain-rate
concentration tensor instead of the corresponding dilute expression of Eshelby.

In the works of Ponte Castañeda & Zaidman (1994) and Zaidman & Ponte
Castañeda (1996), the volume fraction and the aspect ratios of the inclusions were
the only microstructural variables considered. This simplification was justified by the
fact that the effect of the distribution of the inclusions is of second order, relative
to the shape of the inclusions, which is of first order in the volume fraction of the
inclusions. It should also be noted that the more general estimates of the form (3.4),
which take into account the effect of the distribution, were not available until very
recently. It was thus implicitly assumed that the inclusions and the distribution had
the same aspect ratios through every stage of the deformation process, thereby al-
lowing the use of the simplified estimates of Willis (1978). In the present work, we
relax this assumption and treat the distribution of the inclusions as an independent
variable, which will be allowed to evolve differently from the shape of the inclusions.
Thus, in summary, the relevant internal variables which characterize the state of the
microstructure will be taken to be the volume fraction of the inclusions c(2), the two
aspect ratios of the ellipsoidal inclusions wi

1, wi
2 and the two aspect ratios of the

spatial distribution of the inclusions wd
1 , wd

2 (see figure 1).
Having identified the relevant microstructural variables, we next deduce appropri-

ate evolution equations for these variables. An evolution law for the volume fraction
of the inclusions is easily obtained from the kinematical relation

ċ(2) = c(1)c(2)(D(2)
kk −D(1)

kk ). (3.5)

When the matrix is incompressible, D(1)
kk = 0 and therefore D(2)

kk = D̄kk/c
(2), so that

the above evolution law takes the form

ċ(2) = c(1)D̄kk. (3.6)

The change in the aspect ratios of the inclusions is governed by the well-known
kinematical relations

ẇi
1 = wi

1(D(2)
33 −D(2)

11 ) and ẇi
2 = wi

2(D(2)
33 −D(2)

22 ), (3.7)
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involving only the average strain rate in the inclusions D(2) = A(2)D̄, where
the strain-rate concentration tensor A(2) is given by equation (3.2). It is noted
that A(2) is, in general, a function of all the microstructural variables, as well
as of the material properties of the inclusion and the matrix phases; that is,
A(2) = A(2)(c(2), wi

1, w
i
2, w

d
1 , w

d
2 ;µ(1), µ(2)).

Finally, the evolution of the aspect ratios of the spatial distribution of the inclu-
sions is assumed to be controlled by the relations

ẇd
1 = wd

1(D̄33 − D̄11) and ẇd
2 = wd

2(D̄33 − D̄22), (3.8)

which follow from the assumption that the inclusions are transported by the mean
flow. That this should be the case has been demonstrated rigorously for composites
with periodic microstructures. Thus, Levy & Sanchez Palencia (1983) have shown,
through an asymptotic analysis of the problem, that the positions of rigid inclusions
in a three-dimensional, periodic flow of an incompressible, viscous fluid is indeed
controlled by the bulk flow (i.e. by v = D̄x). For composites with more general
(random) microstructures, it is plausible that the same result should hold, even if
the inclusions are allowed to deform.

The ordinary differential equations (3.6), (3.7) and (3.8), together with the effective
constitutive equation (2.9), define the evolution of c(2), wi

1, wi
2, wd

1 , wd
2 and D̄ if σn =

σ̄n is prescribed on the boundary (or, equivalently, of σ̄, if v = D̄x is prescribed
on the boundary). Note that the evolution of the microstructural variables may lead
to the eventual overlap of the inclusions (and of their distributional ellipsoids), in
which case the above model ceases to be valid (because the constitutive equation
(2.9) would then no longer apply; see Ponte Castañeda & Willis (1995)). Because of
the dependence of the microstructural variables on the average stress (or strain rate),
it follows that the effective compliance and viscosity tensors will depend on the stress
(or strain rate) and therefore the effective response of the two-phase, linearly viscous
composites will be nonlinear and anisotropic (i.e. non-Newtonian). It is also noted
that uniform boundary conditions have been assumed for the purpose of carrying out
the homogenization procedure. Once this is done, however, the constitutive model
can be used for general non-uniform boundary conditions provided that the scale of
variation of the applied loading conditions is still large compared to the size of the
typical heterogeneity. This would be the case, for example, in an extrusion process
where the size of the dies is large compared to the size of the pores or inclusions
in the material that is being extruded. For non-uniform boundary conditions, the
equilibrium and compatibility conditions for the average stress σ̄ and the average
strain rate D̄, respectively, must be taken together with the constitutive relations and
the evolution equations for the now position-dependent microstructural variables. On
the other hand, for uniform boundary conditions, the equilibrium and compatibility
equations are automatically satisfied and hence the constitutive relations and the
evolution equations for the microstructural variables are sufficient to describe the
effective response of the composite.

4. Nonlinearly viscous composites

(a ) Effective constitutive relations
In §2, we saw that the effective behaviour of a composite is defined by the relation

(2.3), together with the variational statement (2.4) for the effective potential of the
composite. Ponte Castañeda (1991, 1992) has introduced an alternative variational
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representation by means of which estimates for the effective potential of nonlinear
composites can be obtained from corresponding estimates for linearly viscous com-
posites with the same microstructure as the nonlinear composites. Expressions for
the effective compliance tensor of two-phase, linearly viscous composites were given
in §3 a. In this section, we demonstrate how these results may be utilized to obtain
estimates for nonlinearly viscous composites.

For the class of two-phase composites, the variational statement of Ponte
Castañeda gives the following estimate for the effective potential of the nonlinear
composite:

Ũ(σ̄) ∼= max
µ(1),µ(2)>0

{
1
2 σ̄ · (M̃σ̄)−

2∑
r=1

c(r)V (r)(µ(r))
}
, (4.1)

where M̃ denotes any estimate for the effective viscous compliance tensor for the
two-phase linear composite with viscosities µ(1) and µ(2) prescribed in the volume
fraction c(1) and c(2), respectively, and for fixed bulk viscosities k(1), k(2). In this
expression, the functions V (r) are defined as

V (r)(µ(r)) = max
σ

{
1

6µ(r)σ
2
e − φ(r)(σe)

}
. (4.2)

Note that the estimate given by the right-hand side of (4.1) can be shown to be a
rigorous lower bound, under appropriate circumstances (see Ponte Castañeda 1991).

The Hashin–Shtrikman estimates (3.4) that were obtained for the effective compli-
ance tensor of the linearly viscous composites can now be used to develop estimates
for the effective potential of the nonlinearly viscous composites. The optimal values
of µ(1) and µ(2) in the estimate (4.1) for the potential are denoted by µ̂(1) and µ̂(2),
respectively, and are determined by the relations

1
2 σ̄ ·

[
∂M̃

∂µ(s) (µ̂(r))σ̄

]
− c(s) ∂V

(s)

∂µ(s) (µ̂(s)) = 0, (s = 1, 2). (4.3)

The effective constitutive response of the nonlinear composite may then be written
(see Ponte Castañeda & Zaidman 1996) in the form

D̄ = M̃σ̄, (4.4)

where M̃ = M̃(c(2), wi
1, w

i
2, w

d
1 , w

d
2 ; µ̂(1), µ̂(2)). It is emphasized that this relation,

despite its appearance, is nonlinear because of the dependence of µ̂(1) and µ̂(2) on
σ̄ (directly) and on the microstructural variables (indirectly). Relation (4.4) sug-
gests that the nonlinearly viscous composites may be considered as linearly viscous
composites with stress-dependent viscosities. Later, we will make use of estimates
(3.4) for the effective compliance of two-phase linearly viscous composites to ob-
tain effective constitutive equations for the nonlinearly viscous and perfectly plastic,
two-phase composites.

(b ) Evolution of the microstructure under triaxial loading conditions
The evolution law for the volume fraction of the inclusions (3.6) is a purely kine-

matical relation and hence remains unchanged for nonlinear constitutive behaviour.
Ponte Castañeda & Zaidman (1994) have argued that equations (3.7) can also be
used to determine the (average) change in the shape of the inclusions for the nonlin-
ear composites, provided that appropriate expressions are used for the average strain
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rate in the inclusions. As we have seen, for the linearly viscous composites, the aver-
age strain rate in the inclusions can be calculated from the strain-rate concentration
tensor through the relation D(2) = A(2)D̄. It was also mentioned in the previous
section that the nonlinearly viscous composites may be thought of as linearly viscous
composites with viscosities that depend on the average stress (and the state of the
microstructure). This suggests that the average strain-rate in the inclusions of the
nonlinearly viscous composites can be obtained from D(2) = A(2)D̄ with expression
(3.2) forA(2), evaluated at the optimal values of the viscosities µ̂(1) and µ̂(2) resulting
from (4.3). Then, the evolution equations for the aspect ratios of the inclusions in
the nonlinearly viscous composites are given by (3.7) with the only difference being
that the ‘nonlinear’ strain-rate concentration tensor A(2) is to be used instead of the
‘linear’ one. On the other hand, equation (3.8) for the evolution of the distributional
aspect ratios does not depend on any of the material parameters, being purely kine-
matical in nature. This allows the use of the same expression (3.8) for the evolution
of the distribution of the inclusions in the nonlinearly viscous composites also. As
a partial test of the proposed constitutive model, some comparisons with numerical
simulations of porous materials with periodic microstructures will be given in part II
of this work.

5. Application to linearly viscous composites and axisymmetric
loading conditions

(a ) Porous composites
In this section, we specialize the above results for general two-phase linear compos-

ites to porous composites whose microstructure initially consists of an isotropic dis-
tribution of spherical voids in a linearly viscous, incompressible matrix. Expressions
(3.2) and (3.4) for the strain-rate concentration tensor and the effective compliance
tensor can be simplified by noting that L(2) ≡ 0. We then have that

A(2) = [I − (P i − c(2)P d)L(1)]−1 (5.1)

and
M̃ = [I + c(2)(Si − c(2)Sd − I)−1]−1M (1), (5.2)

which, using the fact that M (1) = (0, 1/(2µ(1))), may be rewritten as

M̃ =
1

3µ(1) m̃. (5.3)

We then note that, in this case, both A(2) and m̃ are independent of the material
properties of the phases, which allows us to express them in the form

A(2) = A(2)(c(2), wi
1, w

i
2, w

d
1 , w

d
2) and m̃ = m̃(c(2), wi

1, w
i
2, w

d
1 , w

d
2). (5.4)

As the composite undergoes deformation, the microstructural variables evolve and
hence both A(2) and M̃ change at every stage of the deformation process. We also
note, for future reference, that the effective potential of the linearly viscous composite
may be written in the form

Ũ(σ̄) =
1

6µ(1) σ̄ · (m̃σ̄). (5.5)

When a composite with an initially isotropic distribution of spherical voids is sub-
jected to axisymmetric loading conditions, the voids and their distribution both
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become spheroidal (wi
1 = wi

2 = wi and wd
1 = wd

2 = wd) and the composite ex-
hibits transverse isotropy. It is then noted that, in this case, we have only three
microstructural variables to deal with: c(2), wi and wd. Due to the transversely
isotropic nature of A(2) and m̃, they can conveniently be expressed (Walpole 1981)
as m̃ = (m1,m2,m3,m4,m5,m6) and A(2) = (a1, a2, a3, a4, a5, a6), where the expres-
sions for the mi and ai are dependent on the relevant microstructural variables (c(2),
wi and wd) and are given in the appendix. The effective potential of the composite
is given by (5.5) with

σ̄ · (m̃σ̄) = m1σ̄
2
p + 1

2m2σ̄
2
n +m3τ̄

2
p +m4τ̄

2
n + 2m5σ̄pσ̄n, (5.6)

where σ̄p = 1
2 [σ̄11 + σ̄22], σ̄n = σ̄33, τ̄p = [σ̄2

12 + 1
4(σ̄11 − σ̄22)2]1/2, τ̄n = [σ̄2

13 +
σ̄2

23]1/2 (see figure 1) are an appropriate set of transversely isotropic invariants of σ̄,
corresponding to in-plane hydrostatic tensile, normal tensile, transverse shear and
longitudinal shear stresses, respectively (see deBotton & Ponte Castañeda 1992). The
instantaneous constitutive relation for the composite is then obtained from relation
(2.3).

The evolution equations for the relevant microstructural variables given in §3 b
can be simplified using the fact that, for axisymmetric loading, D̄11 = D̄22. This
results in the following law for the evolution of the porosity c(2):

c(2) = (1− c(2))(2D̄11 + D̄33), (5.7)

while those for the two aspect ratios are given by

ẇi = wi[(2a5 − a1)D̄11 + (a2 − a6)D̄33] (5.8)

and
ẇd = wd[D̄33 − D̄11]. (5.9)

(b ) Two-phase incompressible composites
Here, we specialize the relations for the effective compliance tensor (3.4) and the

evolution laws for the microstructural variables to the case where the microstructure
of the composite initially consists of an isotropic distribution of incompressible, spher-
ical inclusions in an incompressible matrix. Here again, we may write m̃ = (3µ(1))M̃ ,
so that expression (5.5) for the effective potential still holds. However, here, unlike
in the case of the porous composites, A(2) and m̃ both depend on the properties of
the inclusion and matrix materials through the ratio y = µ(2)/µ(1). Also, in this case,
the proportions of the two phases remain fixed due to incompressibility, so that c(2)

will be taken to be a constant. This allows us to express A(2) and m̃ as

A(2) = A(2)(wi
1, w

i
2, w

d
1 , w

d
2 ; y) and m̃ = m̃(wi

1, w
i
2, w

d
1 , w

d
2 ; y). (5.10)

If, in addition, we consider axisymmetric loading, the microstructure will evolve
in such a way that the composite exhibits transverse isotropy (as discussed in the
previous section). In this case, the only relevant microstructural variables are wi

and wd (c(2) is a constant). As mentioned earlier, for transversely isotropic sym-
metry, we can use the representation m̃ = (m1,m2,m3,m4,m5,m6) and A(2) =
(a1, a2, a3, a4, a5, a6), where the explicit expressions for mi and ai (i = 1, . . . , 6)
(which are dependent on wi, wd and y) are given in the appendix. This allows us
to obtain the effective potential for the composite from expression (5.5) using the
following relation:

σ̄ · (m̃σ̄) = 3m1τ̄
2
d +m3τ̄

2
p +m4τ̄

2
n , (5.11)
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where τ̄d = (1/
√

3)[σ̄33 − 1
2(σ̄11 + σ̄22)], τ̄p and τ̄n are the quadratic, incompressible,

transversely isotropic invariants of σ̄ corresponding to the axisymmetric shear stress,
the transverse shear stress and the longitudinal shear stress.

As mentioned earlier, we have only two microstructural variables to contend with;
wi and wd, the evolution equations for which are simplified by fact that D̄11 = D̄22 =
− 1

2D̄33 and are given by

ẇi = wi[ 1
2a1 + a2 − a5 − a6]D̄33 (5.12)

and
ẇd = 3

2w
dD̄33. (5.13)

6. Application to nonlinearly viscous composites and axisymmetric
loading

(a ) Porous composites
In this section, we allow the inclusion phase to be vacuous so that

U (2)(σ) =

{
0, if σ = 0,
∞, otherwise,

(6.1)

and the matrix to be nonlinearly viscous and incompressible with a potential defined
by (2.5). Upon utilizing expression (5.2) for the effective viscous compliance tensor
of the linearly viscous, porous composite in the variational representation (4.1), we
obtain the following estimate for the effective potential of the nonlinearly viscous,
porous composite:

Ũ(σ̄) ∼= c(1)φ(1)
{[

σ̄ · (m̃σ̄)
c(1)

]1/2}
, (6.2)

where m̃ = (3µ(1))M̃ depends on all the microstructural variables identified in §5 a
and is independent of material properties. Special cases of this result were given by
Ponte Castañeda (1991), Willis (1991), Suquet (1992) and Talbot & Willis (1992).
This result may be specialized further for power-law materials; in the limiting case of
rigid–perfectly plastic behaviour, we obtain the following expression for the effective
yield function of the composite:

Φ̃(σ̄) =
σ̄ · (m̃σ̄)
c(1) − (σ(1)

y )2. (6.3)

The instantaneous constitutive equation for the composite is then obtained through
the use of expression (2.14). It is noted that Λ̇ is obtained from the consistency
condition

˙̃Φ = 0
and depends on the evolution of the microstructure.

We shall consider a composite whose microstructure initially consists of an
isotropic distribution of spherical voids and is subjected to triaxial loading con-
ditions. Then, the relevant microstructural variables are c(2), wi

1, wi
2, wd

1 and wd
2 .

As discussed in §4 b, we can make use of the equations (3.6), (3.7) and (3.8) for the
evolution of these variables for nonlinearly viscous composites, provided the optimal
values, µ̂(1) and µ̂(2), of the viscosities are utilized to obtain the relevant strain-rate
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concentration tensors A(2). It was also mentioned in §5 a that the strain-rate concen-
tration tensors for porous composites are independent of the matrix properties. This
has the implication that the evolution equations for the microstructural variables
are identical for the linear and the nonlinear porous composites. It is emphasized,
however, that these evolution equations must be solved in conjunction with the in-
stantaneous constitutive equations and therefore the evolution of the microstructure
will depend on the material nonlinearity, in general.

We now proceed to determine Λ̇ from the consistency condition requiring that

˙̃Φ =
∂Φ̃
∂σ̄ij

˙̄σij +
∂Φ̃
∂c(2) ċ

(2) +
∂Φ̃
∂wi

1
ẇi

1 +
∂Φ̃
∂wi

2
ẇi

2 +
∂Φ̃
∂wd

1
ẇd

1 +
∂Φ̃
∂wd

2
ẇd

2 = 0. (6.4)

Here, we have made use of the fact that, for the loading conditions considered, the
principal axes of the applied stress σ̄ do not rotate, and hence we do not distinguish
between the Jaumann and the standard time derivatives. The evolution equations
for the microstructural variables are now used in the above expression to obtain the
following expression for the instantaneous behaviour of the composite:

D̄ij =
1
H

∂Φ̃
∂σ̄ij

∂Φ̃
∂σ̄kl

˙̄σkl, (6.5)

where H is the effective hardening rate and is given by

H =−
[

(1−c(2))
∂Φ̃
∂c(2)

∂Φ̃
∂σ̄kk

+wi
1
∂Φ̃
∂wi

1
(A(2)

33ij−A(2)
11ij)

∂Φ̃
∂σ̄ij

+wi
2
∂Φ̃
∂wi

2
(A(2)

33ij−A(2)
22ij)

∂Φ̃
∂σ̄ij

+wd
1
∂Φ̃
∂wd

1

(
∂Φ̃
∂σ̄33

− ∂Φ̃
∂σ̄11

)
+wd

2
∂Φ̃
∂wd

2

(
∂Φ̃
∂σ̄33

− ∂Φ̃
∂σ̄22

)]
. (6.6)

We emphasize that even though the matrix phase has been assumed to be perfectly
plastic in the derivation of (6.6), the effective hardening rate for the porous composite
is seen to be non-vanishing (H 6= 0), in general, corresponding to non-perfectly
plastic behaviour for the composite. Of course, as pointed out earlier in the context
of the linearly viscous composites, this is a direct consequence of the finite changes
in geometry associated with the evolution of the microstructure.

For the case where the composite is subjected to axisymmetric loads, we have al-
ready mentioned that the composite exhibits transverse isotropy. The corresponding
yield function for this case can be obtained from (6.3), where σ̄ · (m̃σ̄) is given by
expression (5.6). Also, the expression for the hardening rate can be simplified by
observing that wi

1 = wi
2 = wi and wd

1 = wd
2 = wd. The relevant microstructural vari-

ables in this case are c(2), wi and wd, the evolution equations for which are the same
as in the linear case ((5.7), (5.8) and (5.9)), where the fact that A(2) is independent
of material properties has been utilized.

In summary, expression (6.5), along with the suitable expression for the hardening
rate, provides the instantaneous constitutive equation for the composite, which can
be solved in combination with the evolution equations for the relevant microstruc-
tural variables to complete the constitutive description of the composite. Finally, it
is noted that the results of Ponte Castañeda & Zaidman (1994) are recovered when
wi

1 = wd
1 and wi

2 = wd
2 .

(b ) Incompressible composites
In this section, we consider nonlinearly viscous composites where both phases—the

inclusions and the matrix—are incompressible. We make use of the result (3.4) for lin-
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early viscous composites, specialized to the case where the constituents are isotropic
and incompressible, in the variational statement (4.1) to obtain corresponding esti-
mates for the effective potential of the nonlinearly viscous composite. When both the
constituents are allowed to have the pure-power law form (2.6) with n(1) = n(2) = n,
the general expression (4.1) may be simplified to give (see, also, Suquet 1993)

Ũ(σ̄) ∼= max
y>0

{[
c(1) + c(2) z2n/(n+1)

y(n+1)/(n−1)

]
φ(1)(σ̂e)

}
, (6.7)

where

σ̂2
e = [σ̄ · (m̃σ̄)]

[
c(1) + c(2) z2n/(n+1)

y(n+1)/(n−1)

]−1

and z =
σ

(2)
y

σ
(1)
y

.

The optimal value of y resulting from the optimization in (6.7) is denoted ŷ; it is
related to the optimal viscosities µ̂(1) and µ̂(2) through the relation, ŷ = µ̂(2)/µ̂(1).

For the limiting case where the phases are rigid–perfectly plastic, we obtain the
estimate for the effective yield function as

Φ̃(σ̄) = max
y>0

{
[σ̄ · (m̃σ̄)]

[
c(1) + c(2) z

2

y

]−1

− (σ(1)
y )2

}
. (6.8)

While (6.7), along with (2.3), provides the instantaneous constitutive equation for the
nonlinearly viscous composite with pure-power law potentials, for the rigid–perfectly
plastic case Λ̇ has to be obtained from the consistency condition which, as mentioned
earlier, depends on the evolution of the microstructure.

In this case also, we shall consider a composite whose microstructure initially
consists of spherical inclusions distributed isotropically and is subjected to triaxial
loading conditions. The relevant microstructural variables in this case are wi

1, wi
2, wd

1
and wd

2 (the relative proportions of phases remains unchanged due to incompressibil-
ity, so that the microstructural variable c(2) is fixed in this case). The microstructural
variables and the evolution equations in this case are the same as the ones for the
linearly viscous, incompressible composites with the difference that (as mentioned
in §4 b) the optimal values of the viscosities must be used in the expression for the
strain-rate concentration tensors. From (5.10), it is seen that strain-rate concentra-
tion tensor A(2) depends on the viscosities only through their ratio y. This has the
implication that the same evolution equations ((3.7) and (3.8)) may be used for the
nonlinear case as well, provided that the optimal ratio ŷ = µ̂(2)/µ̂(1) is used in the
expression for the strain-rate concentration tensor in (3.7).

Proceeding as in the previous section, the consistency condition takes the form

˙̃Φ =
∂Φ̃
∂σ̄ij

˙̄σij +
∂Φ̃
∂wi

1
ẇi

1 +
∂Φ̃
∂wi

2
ẇi

2 +
∂Φ̃
∂wd

1
ẇd

1 +
∂Φ̃
∂wd

2
ẇd

2 = 0. (6.9)

The evolution equations (3.7) and (3.8) are then used in the above expression in
order to obtain an instantaneous relation of the form (6.5), where the hardening rate
is given by

H = −
[
wi

1
∂Φ̃
∂wi

1
(A(2)

33ij −A(2)
11ij)

∂Φ̃
∂σ̄ij

+ wi
2
∂Φ̃
∂wi

2
(A(2)

33ij −A(2)
22ij)

∂Φ̃
∂σ̄ij

+wd
1
∂Φ̃
∂wd

1

(
∂Φ̃
∂σ̄33

− ∂Φ̃
∂σ̄11

)
+ wd

2
∂Φ̃
∂wd

2

(
∂Φ̃
∂σ̄33

− ∂Φ̃
∂σ̄22

)]
. (6.10)
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For the case where the composite is subjected to axisymmetric loads, there are only
two relevant microstructural variables (wi and wd) and the composite exhibits trans-
verse isotropy. In that case, σ̄ · (m̃σ̄) is given explicitly by (5.11) and can be used
in (6.8) to obtain the corresponding yield function. It must also be noted that the
expression for the hardening rate is further simplified by the fact that there are
only two microstructural variables in this case. The evolution equations for the mi-
crostructural variables are the same as in the linear case ((5.12) and (5.13)), with
the difference that the optimal value ŷ is used in the expression for the strain-rate
concentration tensor. As described earlier, the evolution equations are solved in com-
bination with the instantaneous constitutive equations to complete the constitutive
description of the nonlinearly viscous composite.

7. Concluding remarks

This part of the work has dealt with the development of constitutive models for
composites which take into account the evolution of the microstructure as the com-
posites are subjected to finite deformations. In particular, the distribution of the in-
clusions and its evolution in two-phase composites with particulate microstructures
have been accounted for. More specifically, estimates have been developed for the ef-
fective potentials and yield surfaces of two-phase composites with allowance for the
fact that the distribution of the centres of the inclusions may have a different shape
from that of the inclusions. These estimates for the instantaneous response of the
nonlinearly viscous composites were obtained by making use of the recent Hashin–
Shtrikman estimates of Ponte Castañeda & Willis (1995) for linearly viscous compos-
ites in conjunction with the variational representation of Ponte Castañeda (1991).

The aspect ratios of the distribution of the inclusions (or voids) were identified
as independent microstructural variables and evolution equations were developed for
these variables. These equations, along with those for the volume fraction and the
shape of the inclusions, when used in combination with the instantaneous consti-
tutive relations, provide a full description of the behaviour of the composite under
finite deformation. The model incorporates the ability to account for the effect of
the distribution of the inclusions and its evolution on the overall response of the
composite, thus generalizing the earlier work of Ponte Castañeda & Zaidman (1994)
which neglected distributional effects. In an attempt to understand the implications
of the constitutive model developed in this part of the work, part II will be concerned
with a detailed study of the behaviour of certain model composite systems subjected
to axisymmetric loading conditions.
The work of M.K. and P.P.C. was supported by the NSF under Grant No. CMS-96-22714.
Partial support under the MRSEC programme of the National Science Foundation Award No.
DMR-96-32598 is also acknowledged. The project was started while P.P.C. was a Visiting Fellow
in the Department of Applied Mathematics and Theoretical Physics of Cambridge University,
supported by EPSRC Grant No. GR/J66164.

Appendix A. Results for spheroidal inclusions distributed with
spheroidal symmetry

(a) Porous composites

m1 = 1 + c(2) 8he5 − 4e5 − 2e4 − c(2)(8ge5 − 4e5 − 2e3)
∆

,
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m2 = 2 + c(2) 2he5 − 4e5 + e4 − c(2)(2ge5 − 4e5 + e3)
∆

,

m3 = 3 +
4c(2)e3

2e5 − e4 − c(2)(2e5 − e3)
,

m4 = 3− 2c(2)e3

4e5 − 3ge5 + 2e3 − c(2)(4e5 − 3he5 + 2e4)
,

m5 = −1 + c(2) e4 − he5 + 2e5 − c(2)(e3 − ge4 + 2e4)
∆

,

m6 = m5 (A 1)

and

a1 =
4e5 − 6ge5 − c(2)(6e5 − 6ge5 + 2e2)

Σ
,

a2 =
e1 − c(2)(e2 + 2e5)

Σ
,

a3 =
4e5

2e5 − e1 + c(2)(2e5 + e2)
,

a4 =
2e5

4e5 − 3ge5 + 2e1 − c(2)(2e5 − 3he5 + 2e2)
,

a5 =
e1 − c(2)e2

Σ
,

a6 =
2e5 − 3ge5 + e1 − c(2)(2e5 − 3he5 + e2)

Σ
, (A 2)

where,

∆ = e5(3h2 − 8h+ 4) + 2e4 + c(2)[e5(8h+ 8g − 8 + 6gh)− 2e4 + 2e3]

+(c(2))2[e5(3g2 − 8g + 4) + 2e3], (A 3)

Σ = c(2)[3e1 + 4e5 − 6ge5 − c(2)(3e2 + 6e5 + 6he5)]. (A 4)

(b) Incompressible composites

m1 =
2e5 + (1− y)[6he5 − 6e5 − 3e4 − c(2)(6ge5 − 6e5 − 3e3)]
2e5 + (1− y)[6he5 − 6e5 − 3e4 − c(2)(6ge5 − 4e5 − 3e3)]

,

m2 = 2m1,

m3 =
4e5 + (1− y)[−2e5 − e4 + c(2)(2e5 + e3)]

4e5 + (1− y)[−2e5 − e4 + c(2)(−2e5 + e3)]
,

m4 =
2e5 + (1− y)[2e4 − 3he5 + 2e5 − c(2)(2e3 − 3ge5 + 2e5)]
2e5 + (1− y)[2e4 − 3he5 + 2e5 − c(2)(2e3 − 3ge5 + 4e5)]

,

m5 = −m1,

m6 = −m1 (A 5)

and

a1 = 2
e5 + (1− y)[2he5 − 2e5 − e4 − c(2)(2ge5 − 2e5 − e3)]

Γ
,
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a2 =
2e5 + (1− y)[2he5 − 2e5 − e4 − c(2)(2ge5 − 2e5 − e3)]

Γ
,

a3 =
4e5

4e5 + (1− y)[−2e5 − e4 + c(2)(2e5 + e3)]
,

a4 =
2e5

2e5 + (1− y)[2e5 − 3he5 + 2e4 − c(2)(2e5 − 3ge5 + 2e3)]
,

a5 = a1 − a2,

a6 = a5, (A 6)

where
Γ = 2e5 + 3(1− y)[2he5 − 2e5 − e4 − c(2)(2ge5 − 2e5 − e3)]. (A 7)

In the above expressions,

e1 = (3g − 2)[1− (wd)2],
e2 = (3h− 2)[1− (wi)2],
e3 = (3g − 2)[1− (wi)2],
e4 = (3h− 2)[1− (wd)2],
e5 = [1− (wi)2][1− (wd)2], (A 8)

h(wi) =


wi[cos−1(wi)− wi(1− (wi)2)1/2]

(1− (wi)2)3/2 , if wi 6 1,

wi[cosh−1(wi) + wi((wi)2 − 1)1/2]
((wi)2 − 1)3/2 , if wi > 1

(A 9)

and g is given by the same formula above, with the wi replaced by wd.
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